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The equations of ideal relativistic fluid dynamics in the laboratory frame form a noncanonical hamiltonian system with 
the same Poisson bracket as for nonrelativistic fluids, but with dynamical variables and hamiltonian obtained via a regular 
deformation of their nonrelativistic counterparts. 

Introduct ion.  There are a number of fluid dynami- 
cal situations in which (special) relativistic effects are 
important. Such situations occur when either the ve- 
locity of the macroscopic motion is comparable to 
the velocity of light, or when there is sufficiently rap- 
id microscopic motion. In astrophysics, for example, 
stars are commonly modeled as fluid bodies with rela- 
tivistically high energy density and temperature. Rela- 
tivistic fluid dynamics is also applied in certain mod- 
els of free-electron LASERs [1] and particle beams. 

The equations of relativistic hydrodynamics form 
a conservative dynamical system and, thus, are candi- 
dates for description within the framework of the 
hamiltonian formalism. Something approaching 
hamiltonian description of relativistic fluids has been 
given in ref. [2,3] from a constrained variational ap- 
proach resulting in canonical Poisson brackets in 
terms of the so-called Clebsch potentials, some of 
which are unphysical. In nonrelativistic physics, dur- 
ing the last several years, considerable progress has 
been made in understanding hamiltonian structures 
of various continuum systems in terms of physical 
variables alone (see, e.g., refs. [4-15]) .  The result- 
ing Poisson brackets in the physical variables are not 
canonical. Rather, they are associated with certain 
Lie algebras of semidirect product type [6-10,15].  
Moreover, these noncanonical Poisson brackets are 
naturally connected with canonical brackets in La- 
grange coordinates, under the classical map from the 
Lagrange description of fluids to the eulerian one 

(even when the underlying lagrangian description 
is nonabelian and/or contains two-cocycles) [10]. 
Besides providing some general understanding of the 
underlying structure of classical fluid dynamical 
theories and serving as a guiding principle in the deri- 
vation of new fluid theories [9,15], these noncanoni- 
cal Poisson brackets are also useful in practical appli- 
cations. For example, these noncanonical brackets 
have recently been instrumental in deriving nonlinear 
stability conditions for nonrelativistic fluids [ 16]. 

It is natural to ask whether the noncanonical ham- 
iltonian structures in the nonrelativistic case extend 
to the relativistic one, and if so, how do they extend? 
This raises the point that there are no guiding mathe- 
matical principles for such an extension, or even for 
the existence of such an extension. However, heuris- 
tic argument in favor of existence of such an exten- 
sion is provided by the result of Bialynicki-Birula 
and Iwinski [17], who found the noncanonical 
Poisson brackets for a relativistic free fluid ("free" 
refers to noninteracting fluid particles streaming 
freely, without pressure forces). Remarkably, the 
noncanonical hamiltonian structure of the free rela- 
tivistic fluid is identical in form to that (found seven 
years later!) for a nonrelativistic compressible fluid 
with pressure forces, in appropriately chosen physi- 
cal variables. The main result of the present paper is 
that this form-invariance of the hamiltonian struc- 
ture under relativisation carries over also for fluids 
with pressure interaction. 
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This result suggests that there exists an under- 
lying principle of form-invariance upon relativisation 
of the hamiltonian structures of fluids and plasmas 
in interaction with additional fields. A direct proof 
of this conjecture would require verification for each 
additional interacting field (e.g., MHD, gravity, 
etc.) * a. Here we identify the appropriate physical 
variables, hamiltonian functional, and Poisson bracket 
for the basic relativistic fluid description. In this 
case, the Poisson bracket retains the same form as for 
compressible, adiabatic, nonrelativistic fluids. Then 
we demonstrate that the proposed Poisson bracket 
and relativistic hamiltonian imply the correct relati- 
vistic fluid equations. 

Nonrelativistic fluid. In ideal hydrodynamics, the 
physical variables are: p, mass density; M, fluid mo- 
mentum density; and either o, entropy density, or r/ 
= o/p, specific entropy. The fluid moves through 
euclidean space R n with positions x i, i = 1, ..., n. 

In the nonrelativistic case, the velocities v i are re- 
lated to momentum densities by 

v i =Mi/p . (1) 

The eulerian hydrodynamics equations are expressed 
as 

1~1 i = - ( p - l M i M  1. + flip),~ , (2) 

= -Mj ,] ,  (3) 

= -p - l r / , jM] ,  (4) 

where the dot denotes partial time derivative J/at and 
we sum on repeated indices. Latin indices i,j run 
from 1 to n with n = 3 for the physical case, and sub- 
script comma denotes partial derivatives with respect 
to the indicated variables. Eq. (2) is the hydrody- 
namic motion equation expressed in conservative 
form as the divergence of the nonrelativistic stress 
tensor. The fluid pressure p determined as a function 
of p and r/from a prescribed relation (equation of 
state) for the specific internal energy e(p, r/), com- 
bined with the first law of thermodynamics 

de = e o do + e~ dr/= p - 2 p  dp + Tdr/, 

*1 We have verified this conjecture for a relativistic multi- 
fluid plasma. 

where T is temperature. Eq. (3) is the continuity 
equation and eq. (4) is the adiabatic condition for 
each fluid element. 

The hydrodynamic system (2)- (4)  can be ex- 
pressed as a hamiltonian system/I = ~H, F)  with the 
hamiltonian 

H = f [M2/2p + pe(p, 77)] dnx (5) 

equal to the nonrelativistic energy. The Poisson 
bracket (F, G} for functionals F and G is defined to 
be [4-6] 

{F'G}=-rdnx[gGJ L 6F  6G 6F 
~p  D/p 6M] 6r/ r/J 6M] 

+ Oi ~p + r/,i ~ ~] Mi) g-'-'- (6) 

The hydrodynamic equations are then identical to 
= { H , F ) , F  E ~o, o ,M).  

Remark. The quantity fpdnx  is in the kernel of 
the Poisson bracket (6), i.e., ( fpdnx,  F} = 0, VF, so 
H in (5) can be changed to Ifl = H + a fpdnx  for any 
constant u without affecting the hydrodynamic 
equations. Other functionals in the kernel of Poisson 
bracket (6) are, for arbitrary functions ~I', • of their 
indicated arguments, 

f p~,(r/) d"x, f p~,6o -1 curl(M/p)'~Tr/) d3x, (7) 

the latter of which is strictly three-dimensional. The 
quantity f2 = p-1  curl(M/p) 'Tr/ is  known as poten- 
tial vorticity and the conserved functional fpq~(~) d3x 
plays an important role in the nonlinear stability of 
ideal fluids [16]. 

Relativistic fluid. The equations of relativistic hy- 
drodynamics in covariant form are [ 18] 

TUv, u = 0, (8) 

(puU),u = 0, (9) 

where Greek indices/a, v range over O, 1,..., n, xO=ct 
being the real time coordinate. Thermodynamic quan- 
tities such as density p are evaluated in the proper 
frame of a moving fluid element. The metric tensor 
is given by the expressiop - d r  2 = guvdxUdx Vfor the 
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proper time interval and guy has signature +2. The 
equations O f motion are contained in (8) which ex- 
presses conservation of energy and momentum, while 
(9) is the relativistic continuity equation. 

The components of the energy-momentum tensor 
Tuv in three-dimensional form are given in [18], 
where it is also shown that (8) and (9) imply the adia- 
batic equation 

d(o/p) _ O, 
uU(o/P),u- dr 

in which the derivative d/dr is taken along the world 
line of the fluid element concerned. 

For the purposes of hamiltonian formulation we 
express these equations as a dynamical system in the 
laboratory frame. Thus, 

O~li/Ot = -(~liul),/ - P,l' (10) 

a~fi/ot = - ( ~ v i ) , / ,  (11) 

a /at = + p) off,j,  (12) 

and, consequently, 

a~/at = -~ , iv i ,  (13) 

where ~, M, E and ~" are, respectively, the mass den- 
sity, momentum density, energy density (including 
rest energy), and specific entropy in the laboratory 
reference frame. The velocity of matter relative to the 
laboratory frame is denoted by o, and p is the pres- 
sure in the rest frame. The laboratory frame quanti- 
ties are related to rest-frame quantities by 

P' = 7P,  (14)  

M =  72(,oc 2 +pe +p)o/c  2 = 3,2pow, (15) 

k '=  3'2(pc 2 +pe +p) --p = 720c2w - p,  (16) 

,~' = r/, (17)  

where 7 = (1 - v2/c2) -1/2 and w = 1 + (e +p/p)/c 2. 
Notice that when e -2  ~ 0, the relativistic equa- 

tions (10), (11), and (13) limit to the nonrelativistic 
equations (2), (3), and (4), respectively. Now let us 
state the main result of the present work. 

The relativistic equations ( 1 O, (11), and (13) fol- 
low from the same hamiltonian structure (5), re-ex- 
pressed in relativistic variables M,~,  "~, with hamilto- 
nian H = f ( E -  c2~ ") dnx, where E is given by for- 
mula (16}. 

Proof of this is based on the observation that the 
variational derivatives of the hamiltonian H can be 
expressed as 

6H/8~1 k = Ok, (18) 

5 f f / s a  = c 2 [w(1 - v2/c2) 1/2 - 11, (19) 

8H/Srl = e2pw, n - P,n' (20) 

while the hamiltonian H itself can be rewritten as 

f{c2([M2/c 2 + ( w)21V 2 - - p} dnx. (21) 

By substituting identities (18)-(20) into equations 
/~ = {/~, F} in terms of the Poisson bracket (6) with 
variables (Mi, p, rl) replaced by variables (Mi, "~, ~ ,  
one immediately recovers the relativistic motion 
equations (10), (11), and (13). 

Remarks. (A) Just as relativistic equations (10), 
(11), and (13) tend to their nonrelativistic counter- 
parts, so do the relativistic variational derivatives 
(18)-(20),  and the hamiltonian (21), as well. Thus, 
the relativistic theory of fluids is a regular, structure 
preserving deformation, with parameter c -2 ,  of the 
nonrelativistic theory. The desire to keep all the for- 
mulae regular in c -2  motivates choosing the hamil- 
tonian H to be the total energy fEdnx  minus the rest 
mass energy in the laboratory frame c 2 f'~dnx: since 
f~dnx is the kernel of the hamiltonian structure, 
this choice of H does not affect the motion equa- 
tions. 

(B) Because of form-invariance of the hamiltonian 
structure, the counterparts of  functionals (7) give 
conservation laws for relativistic fluid dynamics, (10) 
- (13) .  These conservation laws may be used in the 
stability analysis of relativistic fluid dynamics, by 
the method employed in [16]. 
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by the National Science Foundation and the United 
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